
Influence of surface roughness on the infrared reststrahlen band

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys.: Condens. Matter 7 7173

(http://iopscience.iop.org/0953-8984/7/36/007)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 12/05/2010 at 22:04

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/7/36
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


~ -~ 
I. Phys.: Condens. Matter 7 (1995) 7173-7184. Printed in the UK 

Influence of surface roughness on the infrared reststrahlen 
band 

Stefan K Anderson and Gunnar A Niklasson 
Solid State Physics, Depmtment of Technology, Box 534. Uppsala University, S-751 21 
Uppsda, Sweden 

Received 24 February 1995 

Abstract We study the imluence of surface roughness on the infrared reststrahlen band in 
insulating materials. We model the surface features with either truncated spherical bumps 
on, or rmncated sphericd pih in, the substrate. The polarizability of the truncated sphere- 
substrate system has been calculated from a multipolar expansion, taking into account up to 16 
orders. Two types of resonance have been identified. Substrate-related absorption peaks occur 
at the transvem optical or longitudinal optical phonon frequency, depending on the direction 
of the incident electric field. Additional absorption peaks occur in the vicinity of the resonance 
frequency of a sphere. They are dependent on the detailed geomeuical cofiguration. 

1. ~lntroduction 

The infrared-optical properties of ionic materials are dominated by the so-called reststrahlen 
band between the transverse optical (TO) phonon frequency w? and longitudinal optical (LO) 
phonon frequency 0‘. Transverse electromagnetic waves can interact with transverse optical 
phonons and the quantum of the coupled field is called a polariton. In the reststrahlen region 
the real part of the dielectric function is negative, which leads to a high reflectance from 
the surface of a slab of the material, which leads~ to a high reflectance from the surface of a 
slab of the material. In addition the material is saongly absorbing, and the imaginary part 
of the dielectric function exhibits a resonance at the transverse opticd phonon frequency. 

In the case of small crystallites of ionic materid,~the position of the polariton resonance 
depends on their size and shape [l]. The situation is particularly simple for particles that 
are much smaller than the wavelength of the incident electromagnetic field. In the case of 
spheres, Frohlich [2] showed that the resonance peak occurs at a frequency wF. between 
the TO and LO frequencies. This is also the case for ellipsoids [3], but here one peak is 
obtained for each of the three depolarization factors that describe the shape of the ellipsoid. 

Roughness in the form of protrusions from and pits in the surface modifies the features 
in the reststrahlen band significantly. These effects were first studied by Bememan [4], 
who modelled the surface roughness with hemispherical bumps and pits. He showed that 
structure appears in the restsMlen band, because of excitation of resonances associated 
with the surface inhomogeneities. A similar method has been used to calculate the electric 
field at a bump on a metal surface [5]. In the case of surface features that are much smaller 
than the wavelength, quasi-static theories for a variety of shapes now exist. This is mainly 
due to the efforts of the Leiden group, who have treated the optical properties of truncated 
spheres [6,7] and spheroids [8] on a substrate. Their theory has, to OUT knowledge, not 
been applied to the reststrahlen band, however. 
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In this paper we present the results of extensive quasi-static calculations of the 
polarizability of truncated spheres on, and truncated spherical pits in, the surface of  an 
ionic material. Some results on prolate and oblate spheroids are also included. Of the 
currently solvable geometries, the truncated sphere is regarded as the best approximation to 
a real rough surface. Knowledge of the shape dependence of the features in the reststrahlen 
band is important for the interpretation~of experiments on various ionic or partly ionic solids. 
The present study was motivated by the observation of an extra dip in the reststrahlen bands 
of ceramic beryllium oxide and silicon carbide. This feature was interpreted as being due 
to the effects of surface irregularities 191. In section 2 below, we briefly review the theory 
behind our calculations. First the analytical solution for a small sphere and a sphere on a 
surface in the dipolar approximation~are recalled. Then we shortly describe the theory of 
Vlieger and co-workers I6-81 for truncated spheres and spheroids. These theories can also, 
with proper modifications, be used for pits in the material. The results from our calculations 
for truncated spheres on, and truncated pits in, the surface are presented in section 3. A 
detailed study of the shape dependence on the strength and position of the resonance peaks 
is described. In section 4 we present some concluding remarks. 

2. Theory 

2.1. Free ellipsoidal particles 

Consider a free ellipsoid with one of the principal axes parallel to the direction of the 
incident light. If the ellipsoid is much smaller than the wavelength, the polarizability may 
be written as [3, IO] 

where V is the volume of the ellipsoid, E and E ,  are the dielectric functions of the ellipsoid 
and the ambient, respectively, and L is the depolarization factor, a dimensionless number 
between 0 and 1. A triplet of depolarization factors describe the shapes of the ellipsoid, 
and their sum is unity. For a sphere, obviously, L = 1/3. 

Equation (1) yields that the imaginary part of the polarizability has a resonance for 
E = cm (1 - l/L). The condition 0 c L < 1 ensures that the resonance appears when E c 0. 
In the case of an insulator, this occurs only inside the reststrahlen band between WT and 
WL. For a randomly oriented ellipsoid, three resonances are obtained, which correspond to 
the three principal axes. 

2.2. Particles at the surface: the dipole approximation 

If the particle is in contact with the substrate, the interaction between the electromagnetic 
field and the material is more complicated. In this section we consider the special case of a 
sphere on a substrate. This problem can be solved by expanding the electrical potential into 
multipoles. The dipole approximation yields the following expression for the polarizability 
of a sphere on a substrate [7]: 
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Here (YL and CUI are the polarizabilities of the sphere when~the electric field E is perpendicular 
and parallel, respectively, to the surface of the substrate. The particle volume is denoted 
by V ,  and LI and LII a n  effective depolarization factors given by 

Here 6,,b is the dielectric function of the substrate. As in the case of a free ellipsoid, 
the imaginary polarizability has resonances for G = ~ , ( 1  - ~ / L I , I I ) .  If the particle and 
the substrate have equal dielectric functions, the absorption has two resonances for each 
direction of the electric field E. If the electric field is parallel to the surface of the substrate, 
these resonances occur for E = 36, and E = 5/76, x - 0 . 7 1 ~ ~ .  When E is perpendicular 
to the Surface of the substrate, the imaginary part of the polarizability has maxima for 
6 x -4.16, and E x -0.576,. For a free sphere the resonance, i.e. the Frohlich 121 model, 
occurs at E = -26,. 

2.3. General theory 

In this section we briefly describe the general theory of Vlieger and co-workers [6-8], for 
particles much smaller than the wavelength, and situated at a surface. In this quasi-static 
limit, the electric potential is obtained from a solution of the Laplace equation. 

Consider a truncated sphere on a substrate, as depicted in figure 1. We introduce a 
truncation parameter ro = d / R ,  where d is the distance between the centre of the sphere 
and the subshate. If the centre is situated under the surface of the substrate, ro is negative. 
If the c e n k  is situated above the substrate, ro is positive. A homogeneous electric field is 
incident from the ambient medium 1.  The Laplace equation has to be solved in the ambient 
1, in the substrate 2, in the truncated sphere 3 and in the region 4 in the substrate. 

Figure 1. Cross section of a truncated sphere on a substrate. The numbers 1-4 denote the four 
regions, where the Laplace equation has to be solved. 

In order to solve this problem, we expand the electrical potential into multipoles and 
image multipoles. The electrical potential can then be divided into three parts: 
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where @cxt is the potential due to the external electric field, and the second and third terms 
give the contributions to the potential due to multipoles induced in the sphere and due to 
image multipoles, respectively. Because of symmetry the image multipoles are situated at 
the distance 2d from the centre of the sphere. If the centre of the sphere is above the surface 
of the substrate, the image multipoles are situated in the substrate and the reverse. The use 
of multipoles makes it easy to satisfy the boundary conditions at the spherical surface, and 
leads to an infinite set of linear inhomogeneous equations for the multipole coefficients. A 
technique for solving these equation has been given in [6,7]. In practice, one takes into 
account the N first equations to obtain the N first multipole coefficients. Subsequently the 
polarizabilities all and are calculated numerically. They are proportional to the dipole 
coefficients but include contributions from the N first multipoles. Bobbert and Vlieger 
[SI have employed a similar method for the case of a spheroid on a substrate, by use of 
spheroidal multipoles. 

It is possible to use the same theory to cany out calculations for pits and holes in the 
substrate. This is accomplished by dividing all the dielectric functions in this geometry by 
the dielectric function of the substrate [ I l l .  In this way the pit or hole is transformed into 
a truncated sphere or spheroid with E’ = E , , , / E ~ .  The ambient now becomes the substrate 
with the above value of E’, while the substrate becomes the ambient with E = 1. One must 
also multiply the estimated polarizability by minus one because the angle of incidence of 
the electric field is changed by T. 

In this paper we use these theories in order to investigate the influence of the shape 
of surface features on the reststrahlen band in the infrared. In our calculations we have 
included all multipoles up to N = 16. In the case of touching particles, or particles touching 
a substrate, the convergence of the multipolar expansion is a difficult issue. Haarmans 
and Bedeaux [12] have investigated the convergence for the case of a metal sphere on a 
transparent substrate. For low coverages they find that 15-19 multipoles are necessary to 
obtain an accuracy of The situation that we consider is a little different, however. In 
the reststrahlen band, ionic materials have dielectric functions of ‘metallic’ character. Work 
on touching metallic particles indicates that the multipole expansion exhibits a very slow 
convergence in this case [13]. However, expansions with multipoles up to N = 8 give a 
good qualitative picture of the optical response [14]. 

We have tested the convergence in our case by using different values of N .  We found 
that convergence is obtained with N = 16 when ro e 0 but, when ro > 0, convergence 
was not complete even with N = 16. However, the discussion above indicates that our 
calculations should give qualitatively correct results even in th is case, although small peak 
shifts and some peak broadening might be expected from the effects of higher multipoles. 

S K Andersson and G A Niklasson 

3. Results and discussion 

3.1. Calculations 

In this paper we study the optical phonon absorption between m~ and 0‘ for insulators with 
rough surfaces. The optical constants for Be0  [U] are used in this work, but the resonance 
effects are general for all ionic or partly ionic materials. For beryllia, the wavelength of the 
transverse optical mode is 14.1 p m  and the wavelength of the longitudinal optical mode is 
9.1 pm. 

Calculations have been carried out for oblate and prolate spheroids at the surface of the 
substrate and for truncated spheres and holes. The imaginary part of the polarizability per 
unit particle volume is shown for different geometries and for different directions of the 
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electric field, in sections 3.2-3.4. The imaginary part of the polarizability is proportional to 
the absorption. The wavelengths where Im(or/V) has maxima can be understood as different 
resonance frequencies or phonon modes and the integrated area under each maximum gives 
the strength of the resonance. 

3.2. Particle at the surface of ihe substrate 

Consider a sphere at the surface of a substrate of the same material. We assume that 
the incoming light has normal incidence. A free sphere has a resonance mode at OF 

(see section 2.1) but, if the sphere is placed upon a substrate, several modes with 
different resonance frequencies can be excited. These resonances exist because of multipole 
interactions between the particle and the substrate, 

Figure 2(a) shows that the imaginary polarizability per volume of a free beryllia sphere 
differs from that for a sphere in contact with the substrate. We observe three major resonance 
peaks if the beryllia sphere is in contact with the substrate. One of the peaks appears at the 
Frohlich frequency of the free sphere at 10.4 pm, and the other two peaks appear because 
of interactions with the substrate. The strength of the resonances depends upon the damping 
in the material. However, the number of observable resonances may also depend on the 
damping factor. If the damping factor is high enough, the resonances overlap and cannot 
be distinguished from each other. 

For oblate spheroids (see figure 2(b)) the peak at WF is smaller in magnitude and the 
peaks due to interactions with the substrate are stronger. The opposite is the case for a 
prolate spheroid (figure 2(c)). It is evident that the particle-substrate interaction becomes 
stronger when the particle centre is closer to the substrate surface. 

In the following discussion we consider truncated spheres and holes in the surface of a 
substrate. They are used to model small bumps and pits. 

3.3. Truncated spheres 

Consider first a substrate with a smooth surface. The electric field E is parallel to the 
surface for normally incident light. E is the same in the substrate, at its surface, as in 
the ambient medium, because the tangential component of E is continuous. If the electric 
field is assumed to be constant, the displacement field D is very large for the resonance 
frequency W T .  

It we now place a small sphere at the surface of the substrate the electric field distribution 
is much more complicated. Figure 2(c) shows that there exist three major resonance peaks 
for a beryllia sphere on a heryllia substrate, but there is no maximum of the imaginary 
polarizability at W T .  However, if the sphere is truncated, there occurs a large resonance at 
the frequency OT of the transverse optical modem, as seen in figure 3(a). When the sphere 
is truncated, the large displacement field in the substrate 'leaks' into the particle and gives 
rise to a resonance in the particlesubstrate system. In figure 3(h) we depict the value of 
Im(or/ V )  at the resonance as a function of the truncation parameter. It is seen that the 
resonance becomes stronger as the truncated sphere is flattened. 

Obliquely incident light has  a component of the electric field that is perpendicular to 
the surface of the substrate. We now consider the case when E is perpendicular to the 
substrate. D is now the same in~thesubstrate, at its surface, as in the surrounding medium, 
because the normal component of D is continuous. This means that the electric field just 
below the surface of the substrate is very large for the frequency oLm, where the real part 
of the dielectric function is zero. 

If a truncated sphere is present at the surface of the substrate, the electric field in the 
substrate 'leaks' into the particle. E inside the truncated sphere therefore becomes large at 

S K Anrlersson and G A Niklassan 
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o~ and a resonance peak is observed, as seen in figure 3(c). This resonance occurs only 
because of the surface inhomogeneity. The effect is similar to the case when electromagnetic 
light at oblique incidence excites the longitudinal optical mode in a thin film [16]. The 
resonance becomes stronger as the truncated sphere is flattened (see figure 3(d)). 

For both directions of the incident electric field, there occur several resonances between 
the TO and LO frequencies. One of them appears to be close to the Frohlich frequency. 
We now study in particular the largest of the resonances between oT and DJL. Figure 3(e) 
shows how its wavelength varies with the degree of truncation of the sphere. It is noted 
that the resonance wavelength decreases when the sphere is flattened. The convergence of 
the multipolar expansion is slow when the centre of the sphere lies above the surface of 
the substrate, as noted abovei ,This is probably the reason for the scatter in the data for 
ro > 0. For rg < 0 the resonance wavelen,~ is proportional to the truncation parameter, 
for E both parallel and perpendicular to the surface. When ro goes towards -1, the sphere 
is very flattened and the resonance wavelength goes towards 9.9 fim for the E both parallel 
and perpendicular to the surface. 

The strength of the strongest 'Frohlich-related' resonance vaFies with truncation 
parameter as shown in figure 3(f). The strength of the resonance decreases as the truncated 
sphere is flattened, for E both parallel and perpendicular to the surface. 

3.4. Pits 
Instead of a pit in the surface of the substrate, we consider a truncated sphere on a substrate 
with the dielectric constant E' = € , / E  and. surrounded by a medium with E; = I .  

We consider first the case of E parallel to the substrate. The imaginary part of the 
polarizability is depicted in figure 4(a). Because E' has a maximum when = 0, a strong 
resonance is seen at oL. The strength of the resonance increases as the truncation parameter 
ro decreases, as seen in figure 4(b). 

The case when the electric field is perpendicular to the substrate is shown in figure 4(c). 
Here a resonance develops when E' = 0, i.e. at W T ,  when E has a maximum. The value of 
Im(or/V) at W T ,  as a function of the truncation parameter ro, is shown in figure 4(d). It 
is notable that the strength of the substrate-related resonances depends upon the truncation 
parameter in a similar way for both bumps and pits. The strength of the resonances decreases 
continuously with ro. The slope of the curve depends upon the damping of the TO absorption 
peak in the material. If the damping factor is increased, the slope of the curve decreases 
and vice versa. In addition, the substrate-related resonances are much stronger at wT than 
at wL, for both bumps and pits. 

The Frohlich frequency shifts to 9.4 p m  for spherical holes. Figures 4(a) and 4(c) show 
that there exist a number of resonances in the vicinity of that frequency. The strongest 
Frohlich-related resonance for pits is shifted as the truncation changes, as seen in figure 4(e). 
The shift is much smaller for pits than for bumps, and in the case of pits the resonance 
wavelength decreases as the truncation parameter ro increases. 

The strength of the strongest 'Frohlich-related' resonance is shown in figure 4 0 .  It is 
seen that the strength is quite low and decreases as the duncation~parameter decreases, for 
both directions of E. 

4. Summary 

We have carried out a theoretical study of the effect of particles, bumps and pits at a surface 
on the infrared absorption in ionic materials. In this study we specifically consider BeO, 
but these absorption effects are general for all ionic or partly ionic materials. 
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We have shown that the multipolar interactions between the particle and the substrate 
give rise to several absorption peaks. We may distinguish two types of resonances. The 
first type occurs at OL or 07 and is related to resonances in the substrate. Secondly, there 
exist resonances close to the Frohlich frequency; these resonances are determined by the 
geometrical configuration of the particle-substrate system. The resonance frequencies are 
in general higher for pits in'the surface than for bumps on the surface. 

In experimental ceramic samples, the surface inhomogeneities are usually quite close 
packed. Hence realistic calculations should take into account multipolar interactions between 
the different particles and image multipoles. These interactions can be taken into account, 
for both lattices and random arrangements of particles [12], but a detailed study of these 
effects falls outside the scope of this paper. An interesting result of our calculations is that 
is should be possible to excite the longitudinal optical mode in surface inhomogeneities, 
using obliquely incident light. 
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